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For obvious reasons, the self-diffusion coefficient in bounded many-body 
systems must be strictly zero, provided that it is defined as the limit of 
([R(t) - R(O)12)/(2td) when t grows indefinitely [d is the dimensi'onality, 
R(r) is the position of a given particle at time T], Thus, the time integral 
of the velocity correlation function is strictly zero. A system of hard points 
on a half-infinite line with a reflective wall at the origin does exhibit this 
property of absence of diffusion, since each particle has an average position. 
We study in detail the difference between the velocity correlation functions 
of the infinite and of the half-infinite systems. 

KEY WORDS: Nonequilibrium statistical dynamics; one-dimensional 
hard-point gas; semiinfinite line; self-diffusiOn coefficient; dynamics of 
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1. I N T R O D U C T I O N  

At the I U P A P  Meeting at Chicago in 1971, Lebowitz emphasized that the 

self-diffusion coefficient in a bounded,  many-body  system is just  equal to 
zero, since the mean square displacement of a particle in a box cannot  grow 
indefinitely. In  particular,  (1~ this prevents one.from defining the self-diffusion 
coefficient of an infinite system as the limit of the coefficient of sets of larger 
and larger systems. Thus, it is of  some interest to look at a model where the 
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behavior of the velocity time correlation could be studied in detail near the 
thermodynamic limit. 

Some years ago, Jepsen (~ and Lebowitz et al. C3'~ found the exact 
velocity time correlation of a one-dimensional system of hard points. In 
particular, they found that, for a Maxwell velocity distribution, the asymp- 
totic behavior of this function is given by 

(vi(O)v,(t)) ~_ [(5/2~r) - l](2~r)- ll2(pt)- a (1) 

where p denotes the number density of the hard-point system and the units 
are chosen so that kT/m = 1. Most of these results remain true for a system 
of hard rods of length b, provided that p is replaced by p(1 - ob)- 1. 

In this paper, we use the methods developed in Ref. 3 to study another 
one-dimensional model which at first sight does look rather similar to the 
Jepsen model but actually behaves in a very different manner: We consider 
an infinite gas which is the limit of a system of N hard points on a half-line 
of length L (N, L -+ 0% O = NIL finite). At the origin of the axis, there is 
by assumption, a purely reflective wall or "mi r ro r "  (see Fig. 1). 

If there was diffusion in the usual sense, a given particle should go away 
from the mirror and, since no particle comes from behind the mirror, the 
number density in the space between the wall and the particle should decrease 
indefinitely; such a situation looks very unlikely, and this explains why the 
self-diffusion coefficient is zero in this system. Thus,  in this half-infinite 
system, the behavior of the velocity autocorrelation function must differ 
from that in a system infinite in both directions. However, one may expect 
that, when the particle is very far from the mirror on the average, the short- 
time behavior of the velocity time correlation does not change too much with 
respect to the case of the full infinite line. Actually, the perturbation becomes 
important only at times of the order of the mean distance of the particle to 
the wall. In some sense, this distance plays a role more or less similar to the 

0 ' ,  , ~ "position axis 

I V ~ J  

Fig. 1. Trajector ies  o f  s o m e  part icles on a semiinf ini te  line. Particles are cons idered  as 
h a r d  points .  
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one of the size of a bounded system; in fact, when it grows indefinitely, the 
correlation at finite times keeps its value for an infinite system, although its 
integral remains equal to zero, as for a bounded system. Accordingly, one 
may hope to get some insight into the behavior of the time correlation near 
the thermodynamic limit from a~. study of this half-infinite system. 

In this paper, we derive first the mean value of the pth power of 

A . ( t )  = R . ( , )  - R . ( 0 )  

where R~(~-) is the position of the particle of rank n on the line at time r 
(this means that n - 1 particles lie between this particle and the mirror). 
Then, we can derive the correlations of its velocity as they are related to each 
other in an elementary way. The final expressions of these correlations 
depend on the equilibrium velocity distribution. For a system of hard 
points on a line, the collisions do not change this velocity distribution, and 
it may be chosen almost freely. Actually, it does not depend on time, pro- 
vided that the ensemble of initial conditions is such that the positions of the 
particles are uncorrelated and their number density is space independent. In 
the case of a Maxwellian distribution, we show that for finite times and large 
n (i.e., when the particle is far from the mirror), the velocity correlation 
function for infinite and half-infinite systems are nearly equal; on the 
contrary, their asymptotic behaviors strongly differ from each other for long 
times of the order of n/O. 

2. F O R M U L A T I O N  OF T H E  P R O B L E M  

The self-diffusion coefficient of the nth particle on the line is related to 
the velocity self-correlation by the Einstein formula: 

~0 ~176 D, = dt (V,(O) V , ( t ) )  

where V~(T) is the velocity at time -~ of  the particle of  rank n on the half-line. 
In order to compute the time correlation functions of the hard-point 

system, we shall use the method of Jepsen and of Lebowitz et al., which 
allows one to replace the time correlation function of the hard-point system 
by some other correlation of a free point system with the same initial con- 
ditions. We shall denote by capital letters the dynamical variables of the 
hard-point system [R~(t'), V~(t') ..... are position, velocity ..... of the nth 
particle at time t'] and by lower case letters the variables of the free point 
system [r(t), v(t),...]. 

Our objective is to prove that D. is just equal to zero for any value of n 
in the case of a half-infinite line. Actually, we have found that it is slightly 
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easier to study the long-time behavior of 

A~2(t) = ([Rn(t) - R~(0)] 2) (2) 

which is the mean square displacement of the nth particle between times 0 
and t. It is easy to show from the Einstein relation 

D~ = �89 lim (d/dt)2~2(t) (3a) 
t--* oo 

that there is no diffusion (i.e., D~ = 0) if 2x~2(t) tends smoothly to a constant 
value at t ~ oe. Furthermore, the asymptotic behavior of (V~(O)V~(t)) may 

be deduced at once from that of )x~(t) by using the formula 

(V~(O) V~(t)) = �89 2)A~2(t) (3b) 

Now we have to calculate the average. Following Lebowitz and Percus, (a> 
we replace the complicated problem of averaging for hard points by a 
simpler problem of averaging for free points: In a collision between two 
particles i and j, it is equivalent to saying that they have exchanged their 
velocities or that they have permuted their indices. At time t, the particle i 
is then represented by a free particle k which has at time t the same rank on 
the line as particle i at time 0. The reflections on the wall at the origin may 
be accounted for by replacing the system of points on the half-line by a 
system of 2N hard points on a line of length 2L, symmetric with respect to 
the origin and without the wall at the origin. A collision of a particle against 
the wall is then replaced by an exchange of index with its "m i r ro r "  particle 

i . . 
(see Fig. 2). We do not care about the boundary conditions at the other end 
of the line, since we suppose in any calculation that the limit of an infinite 
line is taken before any other limiting process, so that our results do not 
depend on these boundary conditions. In particular, the mean square 

mirror port 0 
of the position ~ " ~  . J  
axis (-J)"~ 

.I ~ I~I (J) 

,- position axis 

time axis 

Fig. 2. Exchange of  the indices of  the real and mirror  particles at r = 0 (reflection). 
Particles are considered as free points.  The trajectory given by the solid line is that  of  
the real, hard-poin t  particle. 
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displacement is allowed to grow like the time provided that  this displacement 
is assumed to be much smaller than the length of  the line, as we should do. 

We come now to the formulat ion of  the problem. We denote by r~, v~ 
(i,-a O, i =  - N ,  .... - 1 ,  +1  .... , + N )  the position and velocity of  particle i 
at time t = O. We shall call particles with positive indices real particles 
(0 < i ~< N)  and those with negative indices, mirror particles; the particles 
are numbered in such a way that  

r - i  ---- - r i ,  v- i  = -vi 

To one unit, the rank of  particle k on the line at time t can be defined as the 
integer function 

%(t)  = ~ e[rk(t) - rj(t)] (4) 
j , k  

where e(x) is the Heaviside step funct ion 

~(x) = 1 when x > 0 
= 0 otherwise (5) 

and, of  course, 0 ~< ok(t) ~< 2N - 1. 

The average value AJ ( t )  o f t h e p t h  power of  the distance A~(t) = R~(t) - 
R~(0) of  the nth real particle f rom its original position is 

A. ' ( t )  = ~ <[R~(t) - Ri(0)]" 3o,(O),N+~-1) 
i = l , ' " N  

= ~ <[rs(t ) - r,(O)]" 3~,(O,.N+._ 1 8~,(t,,~,co,) 
] = N , . . . , N ; ] ~ O  

i= l,'",N 

o r  

&P(t)  = ~ <[rj + v~ - rd ~ a~,~o).N+~-I a~,~t),~,~o)> (6) 
] : ~ 0 =  - - N , ' " , N  

t = l , . . . , N  

In the above expressions, 8., B denotes the Kronecker  symbol 

8~,B = 0  if ~ # f i  
8.,~ = 1 i f  a = f l  (7) 

and the averages are now taken with the equilibrium weight for  free points 
on a line of  length L:  

~-~ ? dv, ho(v~)E(r,) (8) 
/ = 1  

where ho(x) is the velocity distribution function, which is quite arbitrary,  but 
which we shall choose as a Maxwellian 

ho(x) -- (27r)- 1/2 e x p ( -  x2/2) (ga) 
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Notice that in the above relation, units are such that kT/m = 1. In the 
following sections, we shall need also the related functions Erf x (error 
function) and O(x) (half collision frequency) defined by 

fO X Erf x = ho(v) dv (9b) 

and 

r  = Erf v dv = ho(x) + x Err x 

Starting now from Eq. (6), we are led to split A.P(t) into four terms 

(9c) 

A.P(t) = A1 + AI' + A2 + A2' (lo) 

with 

A1 = NtP(vf 8~(t~,~,co~3~,(o),N + ~- 1) (1 la) 

; ) AI' = ( - 1 ) ; t ;  + vi 3~_~(t),o,(o) 3~(o).N+~-1 ( l ib )  

A 2 ' = ( - 1 ) ' N ( N - 1 ) t P ( [ ~ +  V;.JP3a_,(t).a,(o)3~,(0),N+n_t) ( l ld)  

where indices i and j denote real particles (r~, rj t> 0) and indices - i  and 
- j  the corresponding mirror particles. It is important to realize that the 
indices i and j are no longer an indication of a rank on a line but represent 
any one of the real free particles. 

The contributions A1 and A2 are very similar to those of the full infinite 
line, while AI' and A2' appear in the case of the half-infinite line only, since 
they account for the case when particles initially behind the mirror have at 
time t the same rank as particle n at time zero. At large n, the contributions 
AI' and A2' will be important for times of order n, which are required for the 
arrival of a mirror particle at a distance rip- 1 from the mirror on the positive 
axis. The four contributions listed in (11) are calculated in Appendix A and 
are given by Eqs. (A.3) and (A.5), respectively. However, they are complicated 
even for n = I and we need the help of a computer to get many Of them. 
However, we can perform the calculations in two limiting cases, which are 
actually the cases of interest: (i) long-time behavior for arbitrary n [see 
Eq. (A.6)] and (ii) finite time and large n [Eqs. (A.4), (B.3), and (B.4)]. 
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3. THE RESULTS 

As explained in the introduction, we are mainly interested in the prop- 
erties of the time correlations near the  thermodynamic limit. From this 

point of  view it is enough to consider the behavior of  2~,~(t) first when the time 
increases indefinitely for an arbitrary n, and then when n increases, the time 
remaining fixed. In this section, we shall briefly list the results. 

3.1. Long-T ime  Behavior  

The only important  contributions arise from A2 and A2'. Taking only 
the dominant part, we get 

A~P(t) ~ A2 + A2' = 2A2 

l f o = f o ~  '"-1 P~ d~o' d x [ e x p ( - o /  x)](o/ x)P (n - 1)! (n - 1)! 

F o r p  = 1, we recover A.(t) = 0, i.e., (R . ( t ) )  ~ (R.(0))  = n/p, since the gas 
is invariant with respect to time translation. The nth particle oscillates around 
its position with a width given by 

A.2(t) = 2n/p 2 (12) 

and then the self-diffusion coefficient D.  is zero; as a supplementary result, 
we get the factorization property ~5) 

(R.(t)R.(0)> ~ (R . ( t )XR. (0 ) )  
g ~ o 0  

and more generally 

(exp[ikR.(t)] exp[ - ikR . (0 ) ] )  ~ (exp[ikR.( t )] ) (exp[-  ikR~(O)]) (13) 
t ~  oo 

F o r p  > 2, all the calculations are tractable but it seems to be more interesting 
to study directly the distribution law p . (Z)  of the displacement Z = p A.(t) 
around its initial position; we get 

fo ~ ,.o ' ' - ~  ( ~ , +  t Z l )  " - '  p . (Z )  = ( e x p - I Z l )  &o ' [exp(-2o/ ) ]  ( n -  1)! ( n -  1)! (14a) 

which is an even function of Z because of the time reversal symmetry. 
Notice that [Z]/p may become larger than the mean distance (R~(0)) = n/p 
(for example, Z < - n ) ,  since there is a nonzero probability that Rn(0) takes 
very large, positive values. The function p~ is plotted in Fig. 3 for n = 2, 8. 
When n ---> 0% for finite Z, p . ( Z )  is a small constant, - 1/2Qrn)~/2; for tZl ~ n 
it decreases exponentially to zero. 
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0 . 5  

- . .L~2  

0.1 n=8 ' ~ ' ~  . . . . . . . . . . . . . . . . . . . .  ,'T..~. ~ . ~ ,  

O' I I L ~ - - I  + ' ~  - -  

z + ~ Izl 
Fig. 3. Plot of p.(Z) vs. Izl for n = 2(dashed curve) and n = 8 (dotted line). We have 
indicated the beginning of p.(]Z]) when n = 100 (solid line); the function is nearly a 
constant for ]Z] < 5. 

The  behavior  of  the displacement  Y = p[R.(t) - (n/p)] a round  the 
average posit ion is quite different; the distr ibution law q . (Y)  reads 

q~(Y) +(Y + n) ( Y + n)~-I = e-(V +.> (14b) 

and E(x~ is again the Heaviside step function, which takes into account  the 
fact that  a particle cannot  go behind the mirror.  This distribution law q~(Y) 
is, of  course, the same as the distribution law of  the static fluctuations (i.e., 
the fluctuations at a given t ime with the equilibrium ensemble) of  the posi t ion 
of the nth particle a round its average pos~.tion. When  n > 2, q~(Y) varies 
slowly near  the reflecting wall; for  large n, q~(Y) is max imum a round  Y = 0, 
with a width of  the order  of  a /n  and a value which decreases like 1](2~rn) x/2. 

We can now investigate the higher order terms. For  rather  large n 
(n >> 1 but  n << N),  A1 is quite negligible and so is AI'. All the largest contri- 
but ions at every order  in t -1 arise f rom terms A2, A2'. From expressions 
(A.9) for  A2 and A2' and for  p = 2 we get 

A2 = (nip 2) + (O/p3t) + O(t -2) 
A2' = (nip 2) - [4n(n + 1)/o+t ] + O(t -2) 

whence f rom (3b) 

4n(n + 1) 
(V.(t)V.(O))t_.~ p3t3 + O(t -4) (15) 

Because of  their complexi ty  we have not  calculated the higher order  terms 
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in the long-time expansion of (V , (0 )V, ( t ) )  but p resumably  they are of  order  
nk+l/p~+2t k since no cancellation seems to occur for  k > I. Then,  the ex- 
pansion of the velocity autocorre la t ion  funct ion (V~(t)Vn(O)) has a general 
term of  order  (n/t)k+2; a characteristic " c u t o f f "  t ime t* appears ,  which is 
o f  the order  of  2n/p; it is the t ime necessary for the mirror  particle to come 
in the vicinity of  the studied particle and for large n, the tail of  the velocity 
correlat ion function keeps the same t - a  behavior  as for  the infinite system, 
except that  the coefficient in front  o f  t -3  is changed and grows larger and 
larger when the particle goes far ther  and far ther  f rom the mirror.  

Notice that  for  the first term of the expansion (of  order  t -1)  A~ gives no 
contr ibut ion at all and that  the correction arises because of  the mirror  term 
A2'. It  is possible that  the p redominance  of  the A2' term survives for  higher 
terms in the large-t expansion,  but we have not  been able to prove  it. 

3.2. karge-n Behavior 

For  finite times (or rather  pt << n), the only contr ibut ing terms, Az and 
A2, are given by Eqs. (B.3) and (B.4), which are the same as the terms giving 
the mean  square displacement  for a hard point  on an infinite line (see 
Appendix  B). 

3.3.  F i n i t e - n  B e h a v i o r  

In order to illustrate the difference between ([R,~(t) - Rn(0)] 2) for a 
semiinfinite and for an infinite line, we have studied the cases n = 1 and 
n = 8. For  n = I, formulas  (A.3) and (A.5) become 

)~+  
A~ = t f f p t  v~ p dv~ ho(vO 

jv x do) E(o))exp{-pt[(2o) - vl) - @(2o) - vl) + q~(vl)]} 
1 

AI '  = ( -  1)PtP(pt) dvl ho(v~) 
oo 

x do) 4 -o ) ) (2o )  - vl) p exp{ptv~ - q~(2o) - vl) + OF(v1)} 
1 

A2 = tP(pt) 2 do)' (o) - x)  p dx  
0 

x [�89 + Erf(o)' - x)][1 - Err(o)' + x) - Eft(o)' - x)] 
x e x p { - p t [ x  + o)' - A(o)', x)]} 

fo t A2' = tP(ot) 2 do)' (o)' - x)  p dx  
'JO 

x [�89 - Eft(o)' + x)][1 - Eft(o)' + x) - Eft(o)' - x)] 
x e x p { - p t [ x  + o)' - A(o)', x)]} 
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After some manipula t ions  we get for  n = 1 

A1 + AI '  + A2 + A2' 

/0 = pt do, (uo)~[1 + ( -  1}'] e x p { -  ptO(~o)} dy e x p { -  pty + otq~(y)} 

x {h0(~o) + ho(y) + pt[1 - 2 E r f y  + E r f 2 y  - Er f  2 oJ]} (16a) 

and for  n > 1, we get the general fo rmula  

A1 + AI '  + A2 + A2' 

= (p t )  ~ d ~ o { e x p [ - p t q ~ ( o ~ ) l } ( t o & [ 1  + ( - 1 )  ~] 

x dy e x p { -  pty + otO(y)} 

• 

X 

• 

+ 

• 

• 

x ( E r f y  - E r f 2 y  + Erf  2 ~o) - 

l=0 1] l!  - l ) !  2 

2 - qb(y) + qb(oj q~(y) - q~(oj)] - -1 -~  

[ho(y) + h0(w) + pt(1 - 2 E r f y  + E r f2y  - Erf  2 oJ)] 

"-,~i - -  - ~ + y q~(Y) + ~ (~ )  l~ l~ - l ) ]  2 

[ Y - ~  ]~[ 
2 - *(Y) + *(0') *(Y) - *(~ 

2pt qb(~o)) [Erf2 y - Err2 oJ + ~ (2  - ~ ( y )  + 

l +  1 coErfoJ (16b) 

Funct ions (16a) and (16b) for n = 1, 8 are plot ted on Fig. 4 f o r p  = 2 
(mean  square displacement  of  the first and eighth particles) after computa -  
t ion by a double Gauss  integrat ion method.  The  corresponding average for  
an infinite line also has been represented and its linear (ocDt) asymptot ic  
behavior  is quite clear. The curve for n = 1 departs  very quickly f rom the 
curve n = oo and then tends slowly to its limit value of  2. For  n = 8, the 
depar ture  f rom the curve n = 8 begins at pt ~ 5, and then it goes very slowly 
to its limit value 16 (for pt = 40, it has not  yet reached the value 14). 
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. . . "  

6 . - ' " " n = 8  

5 

4 

3 
n=oo 

2 

R=I 
1 

] I I - - M - - -  
I0 2 4 6 8 10 [st~ 

Fig. 4. Plot of <[Rn(t) - R~(0)] 2> vs. time pt for an infinite line (solid curve) and for a 
semiinfinite Iine when n = I (dashed curve) and r = 8 (dotted curve). 

A P P E N D I X  A. C A L C U L A T I O N  OF A1, At',  A2, A2' 

We shall detail the calculation o f  the "direct" term A1 only and give 
some  indications for AI', A2, and A2'. 

A.1. Calculat ion of  A l a n d A l '  

We start from (1 la)  and use for the Kronecker  symbols  the representa- 
tion o f  Ref. 3. We have 

j ,2~ dO 
6~,~.o,~o~ = ~ exp{lO[a~(t) - o,(0)]} 

0 

t 

= | ~ exp{iO[r + v~t) - r 
d 0 

• ] ~  exp{-iO[r - q )  + e(r, + r;)]} 

• exp{iO[E(r~ - rz + v~t - v l t )  + ~(r~ + rl + v~t + vlt)]} 
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and 

3o~co~,N+~_1 = exp[@r e x p [ - @ ( N  + n - 1)] 

• ~--[ exp{icp[c(r~ - rz) + ~(ri + rz)]} 

A first integration gives for [ >/ 2 

ff ~ dvl ho(vl)exp{iO[E(r~ -- rt + v~t - v~t) + r + r~ + v~t + vd)]} 
oo 

= e ~ ~  ~)  + E r e @ - ~ ) ] )  

= d~ O, r~/t) (A.1) 

which defines the funct ion F. We have set 

o~ = vi + ri/t (A.2) 

and sg x is the sign function (sg x = x/Ixt) .  Tl~e integration over rz is straight- 
forward.  We now per form the integration over ~; doing so, we select the term 
as d <n- I~.  For  n << N, we get 

fi2 fj A1 = t p (pt)" dr1 vlPh0(vl) dWjo ~ ei~176 

x - [(1 - cos O) sg o~ - i s in  O]A ~o, 

x e x p < - o t ( ~ -  [ ( l - c o s O )  s g o ~ - i s i n O ] [ A ( o ~ , ~ ) - o J ] )  

where A(oJ, x) = ~(o~ + x) - r - x). 
Now,  when ~o < 0, the variable 0 a p p e a r s  through the combina t ion  

e-S~ only and the integration for  0 ~< 0 ~< 2~r gives zero. When ~o > 0, both  
combinat ions  e -s~ and e ~~ appear  and the integration over 0 selects the term 
as e ~ -  1~0 of  the last two products  in the integrand;  this simply means that  the 
mirror  particle has not yet crossed the wall. The final result is 

A1 = t ~ dr1 t'lPho(t'l dr E(~o) 
(n ! _ ~  

x e x p { - p t [ ~  + o J - A ( w , ~ ) ] )  

(n 
• 1! l! (n - ) '  

l = 0  " 
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where rl/t = co - vl. 
Coming  now to the mir ror  term A ( ,  it can be seen that  the 0-integration 

can be restricted to co < 0 (the mirror  particle has crossed the wall) and one 
obtains 

A ~ ' = ( - l f  tp (pt)~ f o  fro (n - T)! ho(v ) 
- o o  1 

n-iN, ( - 1 )  "-1-~ ( n - _ l ) ! ( p t )  z + A w, • 
t!t!  l - t ) ,  l = 0  

Expressions (A.3a) and (A.3b) are complicated even for  n = 1 and we 
need the help of  a compute r  to get numerical  results. However ,  we can 
achieve the calculations in two limiting cases, which are actually the ones of  
interest. 

(a) Long-Time Behavior for Arbitrary n. Most  of  the integrand is con- 
centrated near  vl = 0, oJ = 0 with a spread of  the order  of  t -1.  It is then 
easy to verify that  A(oJ, ra/t) behaves like t -2, then that  A (  behaves like 
t -2, and A~ like t - l ;  the dominan t  contr ibut ion arises f rom the term 1 = 
n - i when neglecting A(co, rl/t). 

F o r p  = 2 and long times, the contr ibut ion to A,2(t) o r A l  + AI '  is then 
of  order  t -  ~ and reads 

2h0(0) 1 f0~ ( ~  A1 + A l ' t ~  p3t [(n 1)!] 2 dv~ t'~2e-~ dcoe-2~co~-l(oJ + vl) ~-1 
�9 1 0  

The integrals are e lementary but  become very tedious for  large n. In this 
latter case, a rough majora t ion  gives 

C n 2 
A1 + AI '  ~< - - -  

pat 2 ~ 

where C is a constant ;  this contr ibut ion will become negligible in the evalua- 
t ion of  the asymptot ic  behavior  of  the velocity correlat ion function, as we 
shall see in the next section. 

(b) Finite Time and Large n. When t is finite (ot ~ 1) and the particle 
is far  on the line, we expect to recover the same behavior  as for  a double 
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infinite line, since the particles coming f rom behind the mir ror  have not  yet 
per turbed the region surrounding the particle of  rank  n. We can see this as 
follows. 

When n is large, every term in the summat ion  ~_-g  has the same impor-  
tance but, because of  the presence of  the ho(v,) factor,  it gives a nonnegligible 
contr ibut ion only in a region of the (w, v,) plane where v, is finite and oJ 
(or x = r l / t )  is large. In this region, A(~o, q / t )  = x + �89 - go(v,) + terms 
which decrease like ho(x) at large x;  whence 

A ,  ~_ t" dvl v,Pho(vl) exp - p t  + gO(v, doa(pt) e x p ( - p t x )  
- -o3  1 

X 
~=o ( n -  1 - I)! 

o r  

A~ = t" dvl ho(v~)v~{exp[-ptl~(v,)]}Io(pt[lx2(vl) - t,~2] 1/2) (A.4) 

where Io(x) is the modified Bessel funct ion , / , (x)  = 2gO(x) and is the collision 
frequency (we have used here the notat ion of  Ref. 3). As briefly sketched in 
Appendix  B, we get the same result as for  a hard-point  gas on a full infinite 
line. The remaining p rob lem is the es t imat ion of  the error  in replacing At 
by its limiting expression (A.4). 

Similar a rguments  hold fo r  A, ' ,  but  since oJ is l imited by the condit ion 
v~ <~ o~ <~ 0, A t '  is exponential ly decreasing with n large, i.e., the mirror  
contr ibut ion does not  affect the short- t ime behavior,  as expected. 

A.2. Calculat ion of A2 and A2' 

The  method  explained above is still valid. We only give the results 
(for n << N)  

folio t ~ (Pt)~ do)' dx  (oJ' - x)  ~ A~ = , ( n - - ~ ) !  

x [Erf~o' - Erf(~o' - x)][l - Eft(o;  + x) - Eft(o;  - x)] 

~-2 (n - 2)! ( p t f  +1 
• e x p ( - p t [ x  + w' - A(co', x)]} ~ I ! ( l  + f )~.~n~ ~ - S  l)! 

l = O  

x [ x  - ~x(~o', x ) ] ' [ o , '  - A ( ~ ' ,  x ) ] ' + l [ ~ ( ~ o  ' ,  x ) y  - 2 - '  

r + t p &o' dx (co' - x) p 
( ! , o  

• [Erfco' - Erf(os - x)][Erf(~o' + x) + Eft(o;  - x)] 
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x e x p { - p t [ x  + oJ' - A(o;, x)]} ~ l! l! (n )~ 
l = O  

• [x  - A ( o ; ,  x)]~[o, ' - A(~o', x ) ]~[A(o; ,  x ) ?  - ~ - ~  

+ t, (pt)"+~ fo~ (~ ( ; -  ~! d,~' d x  ( , . '  - x) ,  
a O  

x [�89 + Er f (o '  - x)][1 - Ef t (o/  + x) - Er f (~ '  - x)] 

x e x p { - - p t [ x  4- oJ' -- A(o~', x)]} E l! l! (n 1 - - 1 ) l  
l = O  - -  " 

x Ix  - A ( o ; ,  x)]~[o;  - A ( ~ ' ,  x ) ] ' b ( o ; ,  x)]  ~ -~ -~  

(pt).+l (~d~' (~dx(o~'- x), 
+ t" N :  g!,Jo .0 
x [�89 + Eft (o;  - x)][Erf(o2' + x) + Erf(o2' - x)] 

~-1 (n - 1)! ( p t f  -1 
• e x p ( - p t [ x  + o; - A(~', x)]) ~ 1! (.- : [ - 17.' j -  1)! 

l = 1  

x [x - A(oJ', x)lZ[oJ - A(oJ', x)]~-Z[A(o;, x)] ~-1-~ (A.5) 

A very similar fo rmula  gives A2', except that  the factor  [Eft  oJ' - Erf(w' - x)] 
which appears  in the first and second integrands is replaced by [Erf(oY + x) - 
Er f  w'], a l though the factor  [�89 + Erf(w' - x)] which appears  in the third 
and four th  integrands is replaced by [�89 - Eft(o;  + x)]. Again the exact 
formulas  for A2 and A2' are complicated and we shall s tudy only the two 
limiting cases of  Section 3. 

(a) Long-T ime  Behavior f o r  an Arbi trary  n. The integrand is concen- 
trated a round w' = 0, x = 0 and o/, x are of  order t-1,  whence A(w', x) = 
O(1-2 ) .  Then the four  contr ibut ions to A 2 (resp. Az') are of  order t -1, t -z, 
1, and t-1,  respectively. We shall neglect O ( t - z )  terms again. The dominan t  
contr ibut ion in the first and fourth terms comes f rom the max imum value of  
l and A ~ 0; the second term is negligible. As to the third term, a little more  
care is necessary, since we must  keep the two largest contributions,  i.e., 
(i) lmaxlmum = n - 1, with the second correction,  (ii) l = n - 2 with A = 0. 

Collecting all these results, we get for Az 

_ho(O) (~ (~ x~-~o, '"-I 
Az ~ P ~+lt.]o d w ' e  -~~ d x e - ~ ( w  ' - x)  p (n  _ ,))~(n _ 1)! (first term) 

f co [~ X n __ 1(0,~ - 1 
ko(O) dw' e - ~ '  ] o  dx  e-X(o) ' - x)  p (n 2)! (n 1)t 

- t " P  - ~ t  o - -  - -  

(fourth term) 
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1 1 fo~ fo ~ x~ - lw  '~-I  2 pP d~,'e -~ '  dx  e - X ( ~ ' - x )  p (n - 1)! (n - 1)! 

[dominant  contr ibut ion (i) of  the third term] 

f f ho(0) doJ,e_ ~, dx  e - X ( o f  - x)V[w'x - x - (n - 1)(o)' + x)] + pp+1----}t 
[rest of (i) of third term] 

1 ho(0) f0 x -2 + 2 p p + ~----7 doJ' e -  ~o, dx e -  x(a,' - x) p (n - 2) ! (n - 2) ! 

[(ii) of  third term] (A.6) 

A very similar fo rmula  holds for  A2'. We do not  write it here. The  only 
difference appears  in the four th  term of  Eq. (A.6) [referred to as " r e s t  of  (i) 
of  third t e rm" ] ,  which must  be replaced by 

f? h__o(O)_ (o~ dx  e -X(a ;  x)Vtoa'x 2co' x (n 1)(~o' + x)l pv+lt  j ~ doJ' e -~" . . . . .  

X n - I o,n- i 

• 
(n-  I)! (n-  I)! 

(b) Finite T ime  and Large  n. The prob lem does not  differ very much  
f rom that  for A~ and Az'. Starting f rom Eqs. (A.5), we see that  the dominan t  
contr ibut ion to A2 (resp. A2') comes f rom a domain  where a / a n d  x are both  

I 1 t large but oJ' - x remains finite. Then  k ( ~ ,  x) _~ ~(~o + x) - Op(oj' - x). 
Setting now as new variables v = ~o' - x, v' = �89 + x) - g0(v), and inte- 
grating over v', we get the same expression as the resuIt given for  the infinite 
line in Eq. (B.4) in Appendix  B. 

Coming  now to A2', there is a big difference since the functions E f t ( o ; +  x) 
- Err ~o' and �89 - Erf(~o' + x) are replaced by + (Ef t  2v' - �89 which vanish 
as ho(2v') for large v ' ;  the contr ibut ion of  A2' is then negligible, as expected. 

A P P E N D I X  B. THE VELOCITY A U T O C O R R E L A T I O N  F U N C T I O N  
FOR H A R D  POINTS ON AN INFINITE LINE 

The system is considered as the limit of  a gas of  N points  on a line of  
length L (for example  [ - L / 2 ,  +L/2]) .  Because of  the t ranslat ional  invariance, 
the result does not  depend on the initial r ank  of  the particle. The  mean  square 
displacement  can be rewritten, using averages for  free points  on an infinite 
line, 

( [Rl ( t )  - -  R~(O)] 2) 

= t2(v l  2 8o~(t).~1(o)> + ( N  - 1)t 2 + v2 8~2(o.~1(o) (B.1) 
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with the statistical weight 

1 [  L~-~dr'ho(v~)dv~ and L L z=l - 2  4 r~ ~< ~ (B.2) 

Using the integral representation of the Kronecker symbol, the first 
term is 

t dr1 ho(vl)vl 2 -~  dvz ho(vl) 
- g o  - oe 

f L/2 drz 
x --s - rz + vlt  - v~t) - ~(rl - rl)]} 

o -  Li2 

t z dr1 ho(vl)vl 2 
N ~ o~ co 

N I L  = O ,  f i n i t e  

t "2~ dO 
x Jn ~ exp{itp sin Or1 - tp(1 - cos 0)ff(vl)} 

(see Ref. 3) 

= t ~ dr1 ho(vl)v12Io(ot~2(vl)  - v~2] 1;2) exp[ -  ott4vl)] 
aa 

(B.3) 
where t4v~) is the collision frequency 

[ f ] 
1 + ~  

=2qb(v~) = 2 E r f x d x  = ~ tv~ - x l h o ( x ) d x  

We recover the limit expression (A.6) for large n and for A1. The second term 
reads 

t2 (N - 1) dv~ ho(v~) dr2 ho(v2) 

f + L/2 dr~ + u2 2 
--L- f-u2o dry. X 

x (2~ dO 
Jo ~ exp{iOe[r2 - rl + v2t - vl t]  - iOE(rl - r2)} 

f ~  ( u2 dr, • I - [  dr, h o ( ~ , )  - -  
i > - 3  ~ ~ - L I 2  L 

x exp{iO[E(rz - rz + t;2t - vlt) - E(rl - r~)]} 

t 2 dr1 ho(vl dr2 ho(v2) 
N ~ o3 --O3 

N I L  = D 

( X 

j _  = 7 Jo 
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• exp{iO[~(r2 - r l  + v2t - v l t )  --  E(rl - rz)]} 

e , +  sin + 

Set t ing [(r2 - r l ) / t ]  + t'2 = oJ an d  in t eg ra t ing  over  vl a n d  (r2 - r l ) / t .  

we get 

t 2 ~o 2 do~ pt  ~ exp{ i t p  sin 0o~ - tp(1 - cos O)/z(oJ)} 
-o0 

 [l+e O }[ } 
2 (1 - e i ~  1 + e - i ~  + (1 - e -~~ E r f w  

f+~ fo 2~ d0 = t 2 co 2 &o pt ~ exp{it0 sin 0oJ - tOO - cos 0)/z(oJ)} 
--oo 

x 2 + 2 i s i n  0 ErfoJ - 2(1 - cos 0) Er f  2 ~o 

~+o0 f = r ,o 2 do~ e-~"~[otlo(pt[~2(o~) - o~21 " 2 )  

2otoJ oJ211j2) 
- [/~2(~o~ ~ ~o2]~/2 Io'(pt[/z2(co) - Erf  r 

- 2(�88 + Er f  2 ~o)e-D"tpt[Io(pt[t~2((o) - oJ2] 1/2) 

_ ~_ _ ~o2]~J2)} [/z2(w ) w211,2 lo '(pt[/~2(w) _ (B.4) 

which  is exact ly the l imi t ing  express ion  (A.11) for  large n and  for  A2. M ore -  

over,  we can  say tha t  for  finite t ime  a n d  for  an y  s m o o t h  f u n c t i o n  F 

lira ( F [ R . ( t )  - Rn(0)])half_innnitelin e ----- ( F [ R ~ ( t )  - R~(0)])~nn~t.~o 

the  co r rec t ion  be ing  of  o rder  n -1~2 at  mos t  since R . ( t )  - R . (O)  r ema ins  
finite for smal l  t. 
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